Review – Unit 5 Part 2– Solving Quadratic Equations

Class period

Problems 1-3: Given the graph of a quadratic function, determine if the discriminant is positive, zero, or negative.

Simplify Solutions:

4.
$$x = \frac{-4 \pm \sqrt{64}}{4}$$

$$= -4 \pm 8$$

$$= -1 \pm 2$$

$$1 \times = -3 \text{ or } X = -4 \pm 8$$

5.
$$x = \frac{6 \pm \sqrt{24}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$= 6 \pm 2\sqrt{6}$$

$$x = \frac{6 \pm \sqrt{24}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{6 \pm \sqrt{24}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{6 \pm \sqrt{24}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

$$x = \frac{3 \pm \sqrt{6}}{4} = \sqrt{4} \cdot \sqrt{6}$$

7.
$$x = \frac{4 \pm \sqrt{121}}{20}$$

$$= 4 \pm 1\sqrt{20}$$

$$= 4 \pm 1\sqrt{20}$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

$$= 20$$

8.
$$x = \frac{91\sqrt{21}}{21}$$

 $= 913\sqrt{3}$
 $= 31\sqrt{3}$
 $= 31\sqrt{3}$

$$x = \frac{12 \pm \sqrt{20}}{10} = \sqrt{4} \cdot \sqrt{5}$$

$$= \sqrt{2} \pm 2 \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5}$$

$$= \sqrt{2} \pm 2 \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5}$$

$$= \sqrt{2} \pm \sqrt{5} \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5}$$

Value of the discriminant: (-4)2-4(1)(18)=

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Can this equation be factored? Why? NO, discriminant i Number and type of solutions: (Multiple Choice)

- a) 2 Real & Rational Numbers
- b) 2 Real & Irrational Numbers
- c) 1 Real Number
- d) 2 Complex Numbers

Solve using the Quadratic Formula OR Factoring:

<i>x</i> =	$-b \pm \sqrt{b^2 - 4ac}$
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

11.
$$3x^2 - 7x - 6 = 0$$
Value of the discriminant: ____

Can this equation be factored? Why? Yes, discriminant is aperfect square #

Number and type of solutions: (Multiple Choice)

- (a) 2 Real & Rational Numbers
- b) 2 Real & Irrational Numbers
- c) 1 Real Number

d) 2 Complex Numbers

Solve using the Quadratic Formula OR Factoring:

12.
$$x^2 - 10x = -9$$

 $x^2 - 10x + 9 = 6$

Value of the discriminant:

Can this equation be factored? Why? Yes, discriminant is perfect Square #

Number and type of solutions: (Multiple Choice)

- (a) 2 Real & Rational Numbers
- b) 2 Real & Irrational Numbers
- c) 1 Real Number
- d) 2 Complex Numbers

13.
$$2x^2 - 36 = 0$$

Value of the discriminant: 228

Can this equation be factored? Why? NO, discriminant is not apertent square

Number and type of solutions: (Multiple Choice)

- a) 2 Real & Rational Numbers
- (b) 2 Real & Irrational Numbers
- c) 1 Real Number
- (d) 2 Complex Numbers

Solve using the Quadratic Formula OR Factoring:

Value of the discriminant: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Value of the discriminant: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Can this equation be factored? Why? $\frac{1}{\sqrt{b^2 - 4ac}}$
Number and type of solutions: (Multiple Choice) (a) 2 Real & Rational Numbers b) 2 Real & Irrational Numbers c) 1 Real Number d) 2 Complex Numbers Solve using the Quadratic Formula OR Factoring: (24) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15. $4x_{4/2}^2 \pm 1 = 4x$ Value of the discriminant:
Can this equation be factored? Why? Yes, discriminant is perfect square #
Number and type of solutions: (Multiple Choice) (a) 2 Real & Rational Numbers (b) 2 Real & Irrational Numbers (c) Real Number d) 2 Complex Numbers Solve using the Quadratic Formula OR Factoring;
4x2-4x +1=0
(2x-1)(2x-1)=0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Can this equation be factored? Why? Yes discriminant is a per feet square
Number and type of solutions: (Multiple Choice) a) 2 Real & Rational Numbers b) 2 Real & Irrational Numbers c) 1 Real Number d) 2 Complex Numbers Solve using the Quadratic Formula OR Factoring: $ \chi = \frac{-(5) \pm \sqrt{8}}{2} = \frac{-5 \pm 9}{2} $ $ \chi = \frac{4}{2} = 2 $

17. The height of an object launched vertically is given by $h(t) = -16t^2 + 128t + 10$ where h is the height of the object in feet and t is the time in seconds.

WORK SPACE

a.) Find the height of the rocket after 1 second.

b.) At what time(s) is the rocket at a height of 202 ft?

c.) When does the rocket reach the maximum height? What is the maximum height?

d.) When does the rocket land on the ground?

at 8.07 seconds

e.) Using the information you have collected above, sketch a graph depicting the rockets height at time t.

f.) The equation you wrote above only models the height of the rocket while it is in the air. Find the domain and range of this function.

Domain: R Range: 44266

HIGHER LEVEL THINKING!!

18. Given the equation, $x^2 + bx + 9 = 0$, find the value(s) of b to make the equation have the following discriminants. Explain your reasoning.

a) For what value(s) would we need b to become in order for the equation to get a **negative** discriminant?

For 6 26, the discriminant becomes regative because the value for 4ac is larger. So the b) For what value(s) would we need b to become in order for the equation to get a **positive** discriminant?

For b76, the discriminant becomes positive because the value for 4ac becomes smaller. So the difference will be positive.

c) For what value would we need b to become in order for the equation to get a zero discriminant?

For b=6, it would make Equation factorable and when we have a zero discriminant, we will only get one solution.